Weight and lack of Testosterone effect men's health

JULIAN J EMMANUEL

Every 5 points above 30, loss of 2-4 years in life expectancy

Obesity prevalence

Obesity affects just over a quarter of adults in England (Public Health England, 2016) http://www.noo.org.uk/NOO_about_obesity

5-10% of the population has T2DM- McCombie L et al; BMJ Sept 2017

Is weight a predictor of poor health?

HOW PREVALENT IS IT?

Obesity is a predictor of poor health

AETIOLOGY?

0.4

Obesity and (T2) Diabetes are causally linked

DEMAND AND SUPPLY- INSULIN RESISTANCE AND PANCREAS FAILURE

Diabetes and obesity are closely related

90% of individuals with type 2 diabetes are overweight or obese¹
Relationship between BMI and risk of type 2 diabetes

BMI, body mass index.

1. WHO (2003) Obesity and overweight. Available at: http://www.who.int/dietphysicalactivity/media/en/gsfs_obesity.pdf (accessed 29.01.2014)

1. Chan J et al. Diabetes Care 1994;17:961-9

2. Colditz GA et al. Ann Intern Med 1995;122:481–6

Business Use

Who is at risk

What is normal average sugar and does it correlate to weight?

Obesity and Diabetes do correlate, as does Pre-diabetes and obesity

Treating pre-diabetes has benefits in preventing progression to diabetes; The diabetes prevention programme

HBA1c >48 diabetes, >39/42 pre-diabetes, <30 normal- my opinion, so we can reverse diabetes and cure diabetes, if we intervene early

DPP- diabetes prevention programme

Diabetes prevention programme- follow-up 2.8 years, diabetes incidence 11.0 (placebo) 7.8 (metformin a drug) and 4.8 (lifestyle) cases per 100 person-years (2002 NEJM)

Drugs: Metformin (DPP) and now GLP-1 has evidence base for pre-diabetes and obesity

SGLT2 inhibitor- Off Licence- also to treat pre-diabetes and obesity

Degree of obesity is a predictor of risk

Proportion of people with a major co-morbidity, by degree of obesity (Leff and Heath 2009)

Cancer Risk is significantly high

LIKELY INFLAMMATION

Obesity and Cancer risk;

Julian Emmanuel and Simon W Coppack, Obesity, Bariatric and Metabolic Surgery

A Practical Guide

Editors Sanjay Agrawal

Springer publishing, 2018

Cancer type	Relative risk Men	Relative risk women	Suggested causal mechanism
Endometrium		1.59	Estrogen excess
Adenocarcinoma esophagus	<mark>1.52</mark>	1.51	GERD, barrett's esophagus
Thyroid	<mark>1.33</mark>	1.14	
Adenocarcinoma colon	<mark>1.24</mark>	1.09	Hyperinsulinemia and/or IGF-1
Renal	<mark>1.24</mark>	1.34	Hypertension partly
Hepatoma	<mark>1.24</mark>	1.07	NAFLD, cirrhosis
Breast, estrogen receptor positive		1.18	Estrogen excess
Malignant melanoma	1.17	0.96	
Multiple myeloma	1.11	1.11	Inflammatory cytokines, e.G. Il-6
Rectum	1.09	1.02	
Gall bladder	1.09	1.59	Gall stones
Leukemia	1.08	1.17	Inflammatory cytokines, e.G. Il-6
Pancreas	1.07	1.12	
Non-hodgkin's	1.06	1.07	Inflammatory cytokines, e.G. Il-6
Breast, estrogen receptor negative		1.03	Inflammatory cytokines, e.G. II-6
Ovary		1.03	
Prostate	1.03		
Stomach	0.97	1.04	
Lung	0.76	0.80	Negative association with smoking
Squamous esophageal	0.71	0.57	Negative association with smoking

Obesity related co-morbidities:

Health Consequences–Obesity Associated Comorbidities: Julian J. Emmanuel and Simon W. Coppack

		Diseases associated with	
		metabolic consequences	Diseases associated with excess
	Relative risk	(indirect association)	weight (direct association)
Greatly increased ris	Greatly increased risk (>3)	Type 2 diabetes, gallbladder	Sleep apnoea, breathlessness,
		disease, hypertension,	asthma, social isolation,
		dyslipidaemia, insulin resistance,	depression, daytime
		non-alcoholic fatty liver	sleepiness/fatigue
	Moderately increased risk (2-3)	Coronary heart disease, stroke,	Osteoarthritis, respiratory disease,
		gout	hernia, psychological problems
Slight	Slight increased risk (1-2)	Cancer, impaired fertility,	Varicose veins, musculoskeletal
		polycystic ovaries, skin	problems, backache, stress
		complications, cataract	incontinence, oedema/cellulitis

What interventions are beneficial

Are Lifestyle interventions useful?

What % weight loss do they achieve and maintain?

Business Use

P<0.001 for both comparisons with the low-fat diet

In this 2-year trial, 322 moderately obese subjects (mean age 52 years, mean BMI 31 kg/m², mean baseline weight 91.4 kg, male 86%) were randomly assigned to one of three diets: Low fat, restricted calorie; Mediterranean, restricted calorie; or low carbohydrate, non-calorie restricted.

BMI: body mass index.

Shai I, et al. N Engl J Med 2008;359:229-41

NICE 2023- GLP-1

Semaglutide recommended for weight management, alongside lifestyle:

•Maximum of 2 years, and within a specialist weight management service in MDT

- 1 weight-related comorbidity and:
- BMI of at least 35.0 kg/m², or

• BMI of 30.0 kg/m² to 34.9 kg/m² and meet the criteria for referral to specialist weight management services

Mild and moderate obesity- UK experience

The obesity epidemic has reached the UK, with over one million hospital admissions for obesity last year- 2020 If BMI>50 kg/m2, surgical management can be considered as first-line treatment

option. Eligible- 33/1000- 1,980,000 (house of commons library January 2021)

Bariatric surgery, 2014-15

DPP- diabetes prevention programme

Diabetes prevention programme- follow-up 2.8 years, diabetes incidence 11.0 (placebo) 7.8 (metformin a drug) and 4.8 (lifestyle) cases per 100 person-years (2002 NEJM)

Drugs: Metformin (DPP) and now GLP-1 has evidence base

SGLT2 inhibitor- Off Licence

GLP-1 glucoregulat

Suppresses postprandial glucagon secretion, which decreases hepatic glucose production^{1,2}

Slows gastric emptying¹

Stimulates glucosedependent insulin secretion¹

GLP-1 glucagon-like peptide-1.

1. Drucker DJ, Nauck MA. Lancet 2006;**368**:1696–705; 2. Larsson H, et al. Acta Physiol Scand 1997;**160**:413–22.

Does weight and testosterone interact

Obese men (BMI >30 kg/m(2)) had significantly lower SHBG (binding protein) and total testosterone concentrations, than non-obese men

Low testosterone is associated with increased fat mass, reduced lean mass in men- metabolic dysfunction; testosterone deficiency can lead to energy imbalance, impaired glucose control, reduced insulin sensitivity and dyslipidaemia- high cholesterol.

Signs Of Low Testosterone

Is there a correlation between Testosterone and diabetes and weight

Bi-directional relationship between testosterone and obesity, the hypogonadal-obesity cycle

Weight loss can lead to increased total testosterone levels.

Are there benefits to intervening early

- Experience from primary/ secondary gonadal failure:
- benefits of Testosterone replacement: Weight loss/ Increased energy levels/ Increase libido/ improved muscle mass/ fertility

How can we combine these interventions in a synergistic manner

Target weight and Low testosterone- an MDT approach: endocrinologist, urologist and exercise physiologist, dietician and psychologist

A one stop shop- Recommend and start interventions early, and monitor progress under a multidisciplinary team (Endocrinology, urology, physiologist, and psychology, dietetics to come)